Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Potential sputtering

Authors: Friedrich, Aumayr; Hannspeter, Winter;

Potential sputtering

Abstract

The potential energy stored in multiply charged ions is liberated when the ions recombine during impact on a solid surface. For certain target species this can lead to a novel form of ion-induced sputtering, which, in analogy to the usual kinetic sputtering, has been termed 'potential sputtering'. This sputtering process is characterized by a strong dependence of the observed sputtering yields on the charge state of the impinging ion and can take place at ion-impact energies well below the kinetic sputtering threshold. We summarize a series of recent careful experiments in which potential sputtering has been investigated for hyperthermal highly charged ions' impact on various surfaces (e.g. Au, LiF, NaCl, SiO(2), Al(2)O(3) and MgO), present the different models proposed to explain the potential sputtering phenomenon and also discuss possible applications of potential sputtering for nanostructure fabrication.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!