
pmid: 14667313
arXiv: astro-ph/0309238
This paper summarizes the physical mechanisms that encode the type and quantity of cosmological matter in the properties of large-scale structure, and reviews the application of such tests to current datasets. The key lengths of the horizon size at matter-radiation equality and at last scattering determine the total matter density and its ratio to the relativistic density; acoustic oscillations can diagnose whether the matter is collisionless, and small-scale structure or its absence can limit the mass of any dark-matter relic particle. The most stringent constraints come from combining data on present-day galaxy clustering with data on CMB anisotropies. Such an analysis breaks the degeneracies inherent in either dataset alone, and proves that the universe is very close to flat. The matter content is accurately consistent with pure Cold Dark Matter, with about 25% of the critical density, and fluctuations that are scalar-only, adiabatic and scale-invariant. It is demonstrated that these conclusions cannot be evaded by adjusting either the equation of state of the vacuum, or the total relativistic density.
17 Pages. Review paper from the January 2003 Royal Society Discussion Meeting, "The search for dark matter and dark energy in the universe"
Universe, Astrophysics (astro-ph), FOS: Physical sciences, Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.), Astrophysics, large-scale structure, Relativistic cosmology
Universe, Astrophysics (astro-ph), FOS: Physical sciences, Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.), Astrophysics, large-scale structure, Relativistic cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
