Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Philosophical Transa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences
Article . 1956 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective procedures in field theory

Authors: John C. Shepherdson; A. Fröhlich;

Effective procedures in field theory

Abstract

Van der Waerden (1930 a , pp. 128- 131) has discussed the problem of carrying out certain field theoretical procedures effectively, i.e. in a finite number of steps. He defined an ‘explicitly given’ field as one whose elements are uniquely represented by distinguishable symbols with which one can perform the operations of addition, multiplication, subtraction and division in a finite number of steps. He pointed out that if a field K is explicitly given then any finite extension K' of K can be explicitly given, and that if there is a splitting algorithm for K , i.e. an effective procedure for splitting polynomials with coefficients in K into their irreducible factors in K [x], then(1) there is a splitting algorithm for K' . He observed in (1930 b ), however, that there was no general splitting algorithm applicable to all explicitly given fields K , or at least that such an algorithm would lead to a general procedure for deciding problems of the type ‘Does there exist an n such that E(n) ?’, where E is an arbitrarily given property of positive integers such that there is an algorithm for deciding for any n whether E(n) holds. In this paper we review these results in the light of the precise definition of algorithm (finite procedure) given by Church (1936), Kleene (1936) and Turing (1937) and discuss the existence of a number of field theoretical algorithms in explicit fields, and the effective construction of field extensions. We sharpen van der Waerden’s result on the non-existence of a general splitting algorithm by constructing (§7) a particular explicitly given field which has no splitting algorithm. We show (§7) that the result on the existence of a splitting algorithm for a finite extension field does not hold for inseparable extensions, i.e. we construct a particular explicitly given field K and an explicitly given inseparable algebraic extension K ( x ) such that K has a splitting algorithm but K ( x ) has not. (2) We note also (in §6) that there exist two isomorphic explicitly given fields, one of which possesses a splitting algorithm but the other of which does not. Thus the sort of properties of fields we are interested in depend not only on the abstract field but also on the particular representation chosen. It is necessary therefore to state rather carefully our definitions of explicit ring, extension ring, splitting algorithm, etc., and to introduce the concept of explicit isomorphism (3) and homomorphism. This occupies §§ 1,2 and 3. On the basis of these definitions we then discuss the existence of some fundamental field theoretical algorithms in explicit fields and their extension fields. This leads also to a classification of the types of extension fields which can be effectively constructed.

Keywords

rings, modules, fields

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    205
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
205
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!