
The subject of this paper is the simultaneous ideal theory of a pair of integral domains R and G ≥ R, of which R is integrally closed, and G integrally dependent on R. It is assumed that the quotient field L of G is a finite separable extension of the quotient field K of R. The device of quotient rings effects a preliminary simplification in many of the proofs; the quotient rings R S and G S , with respect to any existent multiplicatively closed set S of non-zero elements of R, also satisfy the above basic postulates for R and G. Another method of preliminary simplification, valuable in the discussion of ramification theory, is the adjunction of Kronecker indeterminates. Such indeterminates (algebraically independent over K ) are denoted by y or z ; in connexion with the regular representation of L , they are regarded as adjoined to K .
Rings, modules, fields
Rings, modules, fields
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
