Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society B Biological Sciences
Article . 2023 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
versions View all 4 versions
addClaim

Walking bumblebees see faster

Authors: Lisa Rother; Robin Müller; Erwin Kirschenmann; James J. Foster; Sinan Kaya-Zeeb; Markus Thamm; Keram Pfeiffer;

Walking bumblebees see faster

Abstract

The behavioural state of animals has profound effects on neuronal information processing. Locomotion changes the response properties of visual interneurons in the insect brain, but it is still unknown if it also alters the response properties of photoreceptors. Photoreceptor responses become faster at higher temperatures. It has therefore been suggested that thermoregulation in insects could improve temporal resolution in vision, but direct evidence for this idea has so far been missing. Here, we compared electroretinograms from the compound eyes of tethered bumblebees that were either sitting or walking on an air-supported ball. We found that the visual processing speed strongly increased when the bumblebees were walking. By monitoring the eye temperature during recording, we saw that the increase in response speed was in synchrony with a rise in eye temperature. By artificially heating the head, we show that the walking-induced temperature increase of the visual system is sufficient to explain the rise in processing speed. We also show that walking accelerates the visual system to the equivalent of a 14-fold increase in light intensity. We conclude that the walking-induced rise in temperature accelerates the processing of visual information—an ideal strategy to process the increased information flow during locomotion.

Country
Germany
Related Organizations
Keywords

info:eu-repo/classification/ddc/570, Light, Visual Perception, Reaction Time, Animals, Walking, Bees, Locomotion, Neuroscience and Cognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green