Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

The causes of phylogenetic conflict in a classic Drosophila species group

Authors: Carlos A, Machado; Jody, Hey;

The causes of phylogenetic conflict in a classic Drosophila species group

Abstract

Bifurcating phylogenies are frequently used to describe the evolutionary history of groups of related species. However, simple bifurcating models may poorly represent the evolutionary history of species that have been exchanging genes. Here, we show that the history of three well-known closely related species, Drosophila pseudoobscura, D. persimilis and D. p. bogotana, is not well represented by a bifurcating phylogenetic tree. The phylogenetic relationships among these species vary widely between different genomic regions. Much of this phylogenetic variation can be explained by the potential of different genomic regions to introgress between species, as measured in laboratory studies. We argue that the utility of multiple markers in species-level phylogenetic studies can be greatly enhanced by knowledge of genomic location and, in the case of hybridizing species, by knowledge of the functional or linkage relationships among the markers and regions of the genome that reduce hybrid fitness.

Related Organizations
Keywords

Genetic Markers, Recombination, Genetic, Genome, Species Specificity, Animals, Genetic Variation, Drosophila, Biological Evolution, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 10%
Top 10%
Top 1%
bronze