
pmid: 8920251
Young's modulus and shear modulus are determined for cortical bone from mammals and birds and for antler bone, using three-point bending at a range of span-to-depth ratios between 25 and 10. Young's modulus is obtained by extrapolating the values for the flexural modulus Eapp to infinite span-to-depth ratios. The shear modulus is obtained from the dependance of Eapp on this ratio. The main determinant for the mechanical properties is the mineral content. For mammalian bone the frequency of Haversian systems correlates negatively with stiffness and resistance to shear. However, because Haversian systems have a lower mineral content than laminar bone (the main component), material and structural determinants can not be separated at present. The ratio of Young's modulus to shear modulus is of the order of 20:1. This high value is discussed in terms of the Cook-Gordon theory of controlled crack propagation as well as in its significance for protecting hollow bones from failing upon local impact.
Sheep, Deer, Bone and Bones, Biomechanical Phenomena, Birds, Haversian System, Species Specificity, Bone Density, Microscopy, Electron, Scanning, Animals, Cattle, Horses
Sheep, Deer, Bone and Bones, Biomechanical Phenomena, Birds, Haversian System, Species Specificity, Bone Density, Microscopy, Electron, Scanning, Animals, Cattle, Horses
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 119 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
