Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors

Authors: Philippe Behe; Ralf Schoepfer; Peter Stern; David Colquhoun; Mohammed A. Nassar; David J. A. Wyllie;

Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors

Abstract

Co-expression of wild-type and mutated NMDA NR1 (N598R) subunits in Xenopus oocytes has been used to determine the stoichiometry of the NMDA receptor-channel. When expressed together, wild-type NR2A and mutant NR1 (N598R) subunits produced channels with a main conductance of 2.6 pS and a sublevel of 1.2 pS. These conductances were clearly different from those obtained from wild-type NR1 and wild-type NR2A channels which gave characteristic 50 pS events with a 40 pS sublevel. When wild-type and mutant NR1 subunits were co-expressed together with NR2A subunits a different channel type with a main conductance of 15.2 pS and a sublevel of 11.4 pS was obtained, as well as the 'all wild-type' and 'all mutant' channels described above. These results indicate that there are likely to be two copies of the NR1 subunit in each NMDA receptor complex.

Related Organizations
Keywords

Xenopus, Mutation, Animals, Glutamic Acid, Receptors, N-Methyl-D-Aspartate, Protein Structure, Secondary, Recombinant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?