
pmid: 28280557
pmc: PMC5319323
Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5 σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student’s t -distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5 σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply.
systematic errors, FOS: Computer and information sciences, Science, Q, FOS: Physical sciences, Statistics - Applications, meta-analysis, metrology, Physics - Data Analysis, Statistics and Probability, measurement uncertainty, research reproducibility, Applications (stat.AP), complex systems, Mathematics, Data Analysis, Statistics and Probability (physics.data-an)
systematic errors, FOS: Computer and information sciences, Science, Q, FOS: Physical sciences, Statistics - Applications, meta-analysis, metrology, Physics - Data Analysis, Statistics and Probability, measurement uncertainty, research reproducibility, Applications (stat.AP), complex systems, Mathematics, Data Analysis, Statistics and Probability (physics.data-an)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
