Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biology Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biology Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology Letters
Article . 2006 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
Biology Letters
Article . 2007
versions View all 3 versions
addClaim

Sperm design and sperm function

Authors: Malo, A; Gomendio, M; Garde, J; Lang-Lenton, B; Soler, A; Roldan, E;

Sperm design and sperm function

Abstract

Abstract Spermatozoa vary enormously in their form and dimensions, both between and within species, yet how this variation translates into fertilizing efficiency is not known. Sperm swimming velocity is a key determinant of male fertilization success, but previous efforts to identity which sperm phenotypic traits are associated with swimming velocity have been unsuccessful. Here, we examine the relationship between the size of several sperm components and sperm swimming velocity in natural populations of red deer (Cervus elaphus hispanicus) where selective pressures to enhance male reproductive success are expected to be strong. Our results show that there is little within-male and considerable between-male variation in sperm dimensions. Spermatozoa with longer midpieces swim more slowly, a finding which does not support the hypothesis that the size of the midpiece determines the amount of energy which is translated into swimming speed. In contrast, spermatozoa with elongated heads, and those in which the relative length of the rest of the flagellum is longer, swim faster. Thus, the hydrodynamic shape of the head and the forces generated by the relative size of the rest of the flagellum seem to be the key determinants of sperm swimming velocity.

Country
United Kingdom
Keywords

Male, Deer, Sperm Motility, Animals, Cell Shape, Spermatozoa, Cell Size

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 1%
Top 10%
Top 1%
Green
bronze