Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Biology
Article . 2022 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Biology
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Biology
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of insulin crystalline form in isolated β-cell secretory granules

Authors: Seiya Asai; Jana Moravcová; Lenka Žáková; Irena Selicharová; Romana Hadravová; Andrzej Marek Brzozowski; Jiří Nováček; +1 Authors

Characterization of insulin crystalline form in isolated β-cell secretory granules

Abstract

Insulin is stored in vivo inside the pancreatic β-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn 2+ concentrations inside the pancreatic β-cell insulin secretory granules should promote insulin crystalline state in the form of Zn 2+ -stabilized hexamers. Electron microscopic images of thin sections of the pancreatic β-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra -granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters ( a ≃ b ≃ 84.0 Å, c ≃ 35.2 Å), similar to in vitro crystallized human 4Zn 2+ -insulin hexamer, whereas the largely prevalent unit cell has more than double c -axis ( a ≃ b ≃ c ≃ 96.5 Å) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN 6 cell granules in a microcrystalline form, probably consisting of 4Zn 2+ -hexamers of this hormone.

Related Organizations
Keywords

insulin secretion, peptide hormone, electron microscopy, QH301-705.5, Research, protein crystals, insulin secretory granules, Microscopy, Electron, Islets of Langerhans, secretory granules, subcellular vesicle, Insulin-Secreting Cells, cryo-EM, Humans, Insulin, in vivo crystalization, Biology (General), crystallization in vivo

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold