Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Shockarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shock
Article
Data sources: UnpayWall
Shock
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ENDOPLASMIC RETICULUM STRESS IN SEPSIS

Authors: Weng Lang Yang; Weng Lang Yang; Ping Wang; Ping Wang; Mohammad Moshahid Khan;

ENDOPLASMIC RETICULUM STRESS IN SEPSIS

Abstract

Sepsis is an enormous public health issue and the leading cause of death in critically ill patients in intensive care units. Overwhelming inflammation, characterized by cytokine storm, oxidative threats, and neutrophil sequestration, is an underlying component of sepsis-associated organ failure. Despite recent advances in sepsis research, there is still no effective treatment available beyond the standard of care and supportive therapy. To reduce sepsis-related mortality, a better understanding of the biological mechanism associated with sepsis is essential. Endoplasmic reticulum (ER), a subcellular organelle, is responsible for the facilitation of protein folding and assembly and involved in several other physiological activities. Under stress and inflammatory conditions, ER loses homeostasis in its function, which is termed ER stress. During ER stress, unfolded protein response (UPR) is activated to restore ER function to its normal balance. However, once stress is beyond the compensatory capacity of UPR or protracted, apoptosis would be initiated by triggering cell injuries, even cell death. As such, ER stress and UPR are reported to be implicated in several pathological and inflammatory conditions. Although the detrimental role of ER stress during infections has been demonstrated, there is growing evidence that ER stress participates in the pathogenesis of sepsis. In this review, we summarize current research in the context of ER stress and UPR signaling associated with sepsis and its related clinical conditions, such as trauma-hemorrhage and ischemia/reperfusion injury. We also discuss the potential implications of ER stress as a novel therapeutic target and prognostic marker in patients with sepsis.

Keywords

Inflammation, Apoptosis, Shock, Hemorrhagic, Endoplasmic Reticulum Stress, Activating Transcription Factor 6, eIF-2 Kinase, Stress, Physiological, Reperfusion Injury, Sepsis, Unfolded Protein Response, Humans, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
108
Top 1%
Top 10%
Top 10%
bronze