Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Regulatory T Cells

Overcoming Suppression of T-Cell Immunity
Authors: Tatiana N, Golovina; Robert H, Vonderheide;

Regulatory T Cells

Abstract

Regulatory T cells inhibit cellular immunity and represent an obstacle for the development of cancer immunotherapy. The understanding of Treg cellular biology has exponentially increased during the last 10 years, driven primarily by elegant in vivo studies of mouse models systems and in vitro studies of human cells. Numerous clinical strategies are under active investigation to achieve Treg depletion or inhibition in patients with cancer, including low-dose cyclophosphamide and interleukin-2 or anti-interleukin-2R immunotoxins. To date, only modest results have been reported in patients. Our preliminary data suggest that the antihuman CD25 monoclonal daclizumab may be useful as an alternative approach for in vivo Treg depletion, but the mechanism of action of this effect remains to be elucidated. Certain immune modulatory agents may indirectly affect Tregs in patients with cancer but not necessarily in the desired direction for the therapeutic setting. More sophisticated techniques that have become available for Treg analysis in patients will assist in this important translational effort.

Related Organizations
Keywords

Daclizumab, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, T-Lymphocytes, Regulatory, Mice, Immunoglobulin G, Neoplasms, Animals, Humans, Interleukin-2, Immunotherapy, Cyclophosphamide

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!