Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pediatric...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pediatric Gastroenterology and Nutrition
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Disorders of Interstitial Cells of Cajal

Authors: Alan J, Burns;

Disorders of Interstitial Cells of Cajal

Abstract

ABSTRACTInterstitial cells of Cajal (ICCs) have, in the past 2 decades, been recognised as important elements in the regulation of gastrointestinal motility. Specifically, they have been shown to be critical for the generation and propagation of electrical slow waves that regulate the phasic contractile activity of gastrointestinal smooth muscle, and for mediating neurotransmission from enteric motor neurons to smooth muscle cells. These different functional roles are carried out by different phenotypic classes of ICC that have discrete distributions within the tunica muscularis. Identifying the functional roles of ICC within the gut has been facilitated by studying mutant mice deficient in ICC, either as a consequence of loss of the tyrosine kinase receptor, Kit, or its ligand, stem cell factor, both of which are necessary for normal ICC development. In humans, under certain pathophysiological conditions, loss or defects in ICC networks appear to play a role in the generation of certain motility disorders. Alterations in ICC distribution have been reported in conditions such as achalasia, chronic intestinal pseudoobstruction, Hirschsprung disease, inflammatory bowel diseases, and slow transit constipation. Molecular and genetic techniques are helping researchers to determine whether defects in ICC networks are the cause of motility disorders, or whether the disrupted ICC networks are a consequence of gut dysfunction.

Related Organizations
Keywords

Intestines, Intestinal Diseases, Humans, Gastrointestinal Motility, Enteric Nervous System, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!