Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Opinion in G...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Opinion in Gastroenterology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Gastrointestinal defense mechanisms

Authors: Coleen, Palileo; Jonathan D, Kaunitz;

Gastrointestinal defense mechanisms

Abstract

We have highlighted the recent findings relating to gastroduodenal mucosal defense, including elements that may contribute to the failure of defense systems and factors that enhance mucosal healing, focusing on findings that elucidate new pathophysiological mechanisms.Bicarbonate secretion is mediated by multiple types of prostaglandin E synthases, including membrane-bound prostaglandin E synthase-1. Mucins, growth factors, and trefoil factors are involved in accelerating gastric injury healing through epithelial reconstruction. A combination of NSAIDs and bile induce greater damage on the mucosa than if the two agents were acting alone. Proton pump inhibitors defend the mucosa from injury by promoting cellular restitution as well as inhibiting gastric acid secretion and reactive oxygen species (ROS) damage. Roxatidine, a novel H2 receptor antagonist, acts through a mechanism that involves nitric oxide. Melatonin enhances angiogenesis through the upregulation of plasma levels of gastrin and matrix metalloproteinase expression. The mucosal protective drug polaprezinc exhibits ROS-quenching activities. Lipopolysaccharides induce oxidative stress mediated by p38 mitogen-activated protein kinase (p38 MAPK). Aging weakens gastroduodenal mucosal defense mechanisms.There is a wide array of pathways leading to gastroduodenal mucosal injury in addition to protective defense mechanisms that counteract them to maintain homeostasis. Increased understanding of these systems may help identify novel molecular targets for the prevention and treatment of mucosal injury.

Keywords

Lipopolysaccharides, Bicarbonates, Gastric Mucosa, Gastrointestinal Diseases, Anti-Inflammatory Agents, Non-Steroidal, Humans, Proton Pump Inhibitors, Intestinal Mucosa

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze