Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Otology & Neurotolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Otology & Neurotology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robotic Mastoidectomy

Authors: Andrei, Danilchenko; Ramya, Balachandran; Jenna L, Toennies; Stephan, Baron; Benjamin, Munske; J Michael, Fitzpatrick; Thomas J, Withrow; +2 Authors

Robotic Mastoidectomy

Abstract

Using image-guided surgical techniques, we propose that an industrial robot can be programmed to safely, effectively, and efficiently perform a mastoidectomy.Whereas robotics is a mature field in many surgical applications, robots have yet to be clinically used in otologic surgery despite significant advantages including reliability and precision.We designed a robotic system that incorporates custom software with an industrial robot to manipulate a surgical drill through a complex milling profile. The software controls the movements of the robot based on real-time feedback from a commercially available optical tracking system. The desired path of the drill to remove the desired volume of mastoid bone was planned using computed tomographic scans of cadaveric specimens and then implemented using the robotic system. Bone-implanted fiducial markers were used to provide accurate registration between computed tomographic and physical space.A mastoid cavity was milled on 3 cadaveric specimens with a 5-mm fluted ball bit. Postmilling computed tomographic scans showed that, for the 3 specimens, 97.70%, 99.99%, and 96.05% of the target region was ablated without violation of any critical feature.To the best of our knowledge, this is the first time that a robot has been used to perform a mastoidectomy. Although significant hurdles remain to translate this technology to clinical use, we have shown that it is feasible. The prospect of reducing surgical time and enhancing patient safety by replacing human hand-eye coordination with machine precision motivates future work toward translating this technique to clinical use.

Keywords

Fiducial Markers, Humans, Robotics, Otologic Surgical Procedures, Mastoid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze