Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Current Developments in Drug Testing in Oral Fluid

Authors: Kristof, Pil; Alain, Verstraete;

Current Developments in Drug Testing in Oral Fluid

Abstract

In the last few years, significant developments have occurred on the key issues involved in oral fluid drug testing. New pharmacokinetic studies have been conducted, optimal cutoffs have been proposed, and new studies have examined the correlation between oral fluid drug concentrations and impairment. Recent studies (eg, the discovery of the presence of THC-COOH in oral fluid) can contribute to solve the issue of false-positive results caused by passive exposure to marijuana. Reliable point-of-care drug testing is still problematic, especially for cannabinoids and benzodiazepines. To date, there is no device that allows both reliable and practical point-of-care testing. The importance of liquid chromatography- tandem mass spectrometry in confirmation analysis has increased over the last several years. It can be expected that this trend will continue because the low sample volumes make simultaneous detection of different drug classes with limited sample preparation necessary. Literature on proficiency testing to ensure reliability and comparability of results is limited. Oral fluid has become an important sample type in driving under the influence research, and the first legal random drug testing program in oral fluid since 2004 has been organized in Victoria. It can be expected that the role of oral fluid as an alternative matrix will keep increasing in the future.

Related Organizations
Keywords

Immunoassay, Automobile Driving, Chromatography, Gas, Illicit Drugs, Substance-Related Disorders, Sensitivity and Specificity, Mass Spectrometry, Substance Abuse Detection, Humans, Mass Screening, Saliva, Chromatography, Liquid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!