Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cardiovas...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cardiovascular Pharmacology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MicroRNAs in Vascular Disease

Authors: Shanshan Qin; Chunxiang Zhang;

MicroRNAs in Vascular Disease

Abstract

MicroRNAs (miRNAs) are a novel class of endogenous, small, noncoding RNAs that regulate gene expression via degradation, translational inhibition, or translational activation of their target messenger RNAs. Functionally, an individual miRNA is important as a transcription factor because it is able to regulate the expression of its multiple target genes. As a group, miRNAs are able to directly regulate at least 30% of genes in a cell. In addition, other genes may also be regulated indirectly by miRNAs. It is therefore not surprising that miRNAs could be the pivotal regulators in normal development, physiology, and pathology. Recent studies have identified that miRNAs are highly expressed in vasculature and their expression is dysregulated in diseased vessels. miRNAs are found to be critical modulators for vascular cell functions such as cell differentiation, contraction, migration, proliferation, and apoptosis. Accordingly, miRNAs are involved in the vascular dysfunction, ischemic angiogenesis, reendothelialization, and vascular neointimal lesion formation under diverse vascular diseases. miRNAs may serve as novel therapeutic targets for vascular diseases such as impaired angiogenesis or reendothelialization, restenosis, atherosclerosis, hypertension, and diabetic vascular complication. This review article summarizes the research progress regarding the roles of miRNAs in vascular diseases.

Keywords

Apoptosis, Atherosclerosis, MicroRNAs, Gene Expression Regulation, Hypertension, Animals, Blood Vessels, Humans, Vascular Diseases, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
bronze