Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Epidemiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Epidemiology
Article
Data sources: UnpayWall
Epidemiology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methodological Challenges in Mendelian Randomization

Authors: Tyler J. VanderWeele; Peter Kraft; Eric J. Tchetgen Tchetgen; Marilyn C. Cornelis;

Methodological Challenges in Mendelian Randomization

Abstract

We give critical attention to the assumptions underlying Mendelian randomization analysis and their biological plausibility. Several scenarios violating the Mendelian randomization assumptions are described, including settings with inadequate phenotype definition, the setting of time-varying exposures, the presence of gene-environment interaction, the existence of measurement error, the possibility of reverse causation, and the presence of linkage disequilibrium. Data analysis examples are given, illustrating that the inappropriate use of instrumental variable techniques when the Mendelian randomization assumptions are violated can lead to biases of enormous magnitude. To help address some of the strong assumptions being made, three possible approaches are suggested. First, the original proposal of Katan (Lancet. 1986;1:507-508) for Mendelian randomization was not to use instrumental variable techniques to obtain estimates but merely to examine genotype-outcome associations to test for the presence of an effect of the exposure on the outcome. We show that this more modest goal and approach can circumvent many, though not all, the potential biases described. Second, we discuss the use of sensitivity analysis in evaluating the consequences of violations in the assumptions and in attempting to correct for those violations. Third, we suggest that a focus on negative, rather than positive, Mendelian randomization results may turn out to be more reliable.

Related Organizations
Keywords

Genetic Markers, Random Allocation, Bias, Genotype, Humans, Gene-Environment Interaction, Mendelian Randomization Analysis, Sensitivity and Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    438
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
438
Top 0.1%
Top 1%
Top 1%
bronze