Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Referent Selection Strategies in Case-Crossover Studies

A Settled Issue
Authors: Murray A, Mittleman;

Optimal Referent Selection Strategies in Case-Crossover Studies

Abstract

I n this issue of EPIDEMIOLOGY, Janes et all present a comprehensive review of referent selection strategies in case-crossover analyses of air pollution data. This review is timely, given the increasing popularity of the case-crossover approach, and makes an important contribution to the field. As for other substantive areas of epidemiology, concerns over the validity of estimates of the short-term health effects of air pollution are paramount. Thus, study design decisions and analytic approaches should be engineered to maximize efficiency to the extent possible without introducing inordinate bias. The authors did an excellent job of summarizing insights regarding the importance of careful selection of referent periods to minimize potential biases, including those that arise from time trends in exposure, truncation of the air pollution data at the start and end of the exposure time series, and violations of the assumptions inherent in the conditional logistic likelihood that result in "overlap bias." The arguments put forth by Janes and colleagues convincingly show that, although other approaches may be valid under certain circumstances, the time-stratified selection strategy is more generally valid than any of the alternatives thus far proposed. Thus, this strategy should be considered the de facto standard approach to the analysis of data arising in studies of the short-term effect of air pollution and weather. The caution against "model shopping" is an extremely important one, but it must be distinguished from the concept of sensitivity analysis. Conducting several analyses and "cherry picking" results (ie, presenting only the subset of results that look the most "interesting" to the investigator) clearly is problematic and is likely to lead to the presentation of spuriously extreme effect estimates. However, assuming one considers only approaches that have been shown to be generally valid, it is reasonable for investigators to conduct sensitivity analyses. For example, when conducting a time-stratified case-crossover analysis, the length of the time strata should be chosen subject to the best judgment of the analyst. In studies of short-term health effects of air pollution, investigators have most commonly chosen strata defined by calendar month.>6 This is clearly a convenient choice that is easy to implement. However, an implicit assumption is that time-dependent confounders, such as season, or respiratory illness outbreaks are relatively constant within a calendar month. It is possible that strata of 2 or 3 weeks duration may better control for such confounding or that longer periods of up to 6 weeks might control confounding as well, but be more efficient.

Related Organizations
Keywords

Cross-Over Studies, Research Design, Air Pollution, Case-Control Studies, Humans, Selection Bias

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!