Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Society of Nephrology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vascular Calcification Mechanisms

Authors: Cecilia M. Giachelli;

Vascular Calcification Mechanisms

Abstract

Vascular calcification is highly correlated with cardiovascular disease mortality, especially in patients with ESRD or diabetes. In addition to the devastating effects of inappropriate biomineralization seen in cardiac valvulopathies, calciphylaxis, and idiopathic arterial calcification, vascular calcification is now recognized as a marker of atherosclerotic plaque burden as well as a major contributor to loss of arterial compliance and increased pulse pressure seen with age, diabetes, and renal insufficiency. In recent years, several mechanisms to explain vascular calcification have been identified including (1) loss of inhibition, (2) induction of bone formation, (3) circulating nucleational complexes, and (4) cell death. Alterations in calcium (Ca) and phosphorus (P) balance as seen in patients with ESRD promotes vascular calcification via multiple mechanisms and may explain the alarmingly high levels of cardiovascular disease deaths in these patients. Strategies to control Ca and P levels in patients with ESRD have met with early success in preventing progression of vascular calcification. Whether or not vascular calcification can be reversed is not yet known, but exciting new studies suggest that this may be possible in the future.

Keywords

Calcinosis, Humans, Kidney Failure, Chronic, Vascular Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    499
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
499
Top 1%
Top 1%
Top 1%
bronze