Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pediatric...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pediatric Gastroenterology and Nutrition
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Journal of Pediatric Gastroenterology and Nutrition
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gas Production by Feces of Infants

Authors: Tianan Jiang; Ekhard E. Ziegler; Steven E. Nelson; Fabrizis L. Suarez; Michael Levitt;

Gas Production by Feces of Infants

Abstract

ABSTRACTBackgroundIntestinal gas is thought to be the cause abdominal discomfort in infants. Little is known about the type and amount of gas produced by the infant's colonic microflora and whether diet influences gas formation.MethodsFresh stool specimens were collected from 10 breast‐fed infants, 5 infants fed a soy‐based formula, and 3 infants fed a milk‐based formula at approximately 1, 2, and 3 months of age. Feces were incubated anaerobically for 4 hours at 37°C followed by quantitation of hydrogen (H 2 ), methane (CH 4 ), carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), methanethiol (CH 3 SH), and dimethyl sulfide (CH 3 SCH 3 ) in the head‐space.ResultsH 2 was produced in greater amounts by breast‐fed infants than by infants in either formula group, presumably the consequence of incomplete absorption of breast milk oligosaccharides. CH 4 was produced in greater amounts by infants fed soy formula than by infants on other diets. CO 2 was produced in similar amounts by infants in all feeding groups. Production of CH 3 SH was conspicuously low by feces of breast‐fed infants and production of H 2 S was high by soy‐formula–fed infants. CH 3 SCH 3 was not detected. Only modest changes with age were observed and there was no relation between gas production and stool consistency, although stools were more likely to be malodorous when concentrations of H 2 S and/or CH 3 SH were high.ConclusionsGas release by infant feces is strongly influenced by an infant's diet. Of particular interest are differences in production of the highly toxic sulfur gases, H 2 S and CH 3 SH, because of the role that these gases may play in certain intestinal disorders of infants.

Related Organizations
Keywords

Male, Chromatography, Gas, Milk, Human, Glycine max, Infant, Newborn, Infant, Carbon Dioxide, Sulfuric Acid Esters, Diet, Feces, Intestinal Absorption, Humans, Female, Infant Food, Hydrogen Sulfide, Longitudinal Studies, Sulfhydryl Compounds, Methane, Sulfur, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!