Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Magnetic Resonance Angiography Techniques

Authors: Ronald R. Price; C H Lorenz; C L Partain; Jeff L. Creasy;

Magnetic Resonance Angiography Techniques

Abstract

After a radio frequency pulse, the decay of the magnetic resonance (MR) signal is described by two relaxation processes, T1 and T2. T1 describes the rate at which the magnetization realigns itself along the external magnetic field direction (ML), and T2 describes the rate of decay of the magnetization component along the transverse axis (MT). Magnetic resonance angiography (MRA) sequences have been developed that encode flow as changes in the apparent T1 or T2 of the moving blood relative to stationary tissues. MRA sequences typically use either time-of-flight (TOF) techniques to encode T1 or phase-contrast techniques to encode T2. TOF techniques encode flow as an apparent T1 shortening through the wash-in of fully relaxed blood from outside the image volume. The shorter T1 produces an enhancement of vascular structures relative to stationary tissues. TOF methods may use either sequential two-dimensional, three-dimensional, or multi-slab three-dimensional imaging sequences to produce a three-dimensional MRA data set. Phase-contrast methods use additional magnetic field gradients to encode flow as shifts in the phase of MT. Both TOF and phase-contrast methods use maximum intensity projection (MIP) images displayed in a cine format to aid in the visualization of three-dimensional vascular structures.

Related Organizations
Keywords

Regional Blood Flow, Image Processing, Computer-Assisted, Animals, Blood Vessels, Humans, Image Enhancement, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?