Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AN EXPERIMENTAL DETERMINATION OF FIDLER SCANNING EFFICIENCY AT SPECIFIC SPEEDS

Authors: Craig M. Marianno; Moss Sc; Todd S. Palmer; Kathryn A. Higley;

AN EXPERIMENTAL DETERMINATION OF FIDLER SCANNING EFFICIENCY AT SPECIFIC SPEEDS

Abstract

As part of mass remediation efforts across the country some radiation detection systems are now being used in conjunction with data logging and positioning system technology. These systems can be used in the scanning mode, simultaneously recording both count rate and position. Following data analysis, hot spots can be identified and remediation efforts for that particular area can commence. This technique has been used for nearly a decade and has had success in accelerating preliminary remediation work while also reducing potential clean up costs. However, little work has been completed on how the sensitivity of these detection systems are affected when used with this technology because while the intrinsic efficiency of the detector is constant, scanning efficiency can vary depending on data sampling time and scanning speed. To better understand scanning efficiency for a detector attached to such a system, a device was developed which moved soil at a constant speed underneath a Field Instrument for Detecting Low Energy Radiation (FIDLER). Count rate was measured every 2 s as a 241Am source passed under the detector at speeds ranging from approximately 10 cm s(-1) to 100 cm s(-1). A surface source and a buried source were both examined. Experimental detection efficiency was calculated and compared to Monte Carlo generated results. For the surface source, the efficiency dropped to a value of approximately 1% at 100 cm s(-1). At the same speed, the buried source had a detection efficiency of 0.1%, primarily due to attenuation of the low energy photon in the soil. It was also noted that the response time of the meter affected the scanning efficiency. With a response time set at 1 s, higher average efficiencies were recorded but with a large standard deviation from the mean. Higher response time setting had the effect of reducing the variability of the reading but also reducing efficiency.

Related Organizations
Keywords

Americium, Time Factors, Radiation Monitoring, Equipment Design, Sensitivity and Specificity, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?