<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 12553649
As part of mass remediation efforts across the country some radiation detection systems are now being used in conjunction with data logging and positioning system technology. These systems can be used in the scanning mode, simultaneously recording both count rate and position. Following data analysis, hot spots can be identified and remediation efforts for that particular area can commence. This technique has been used for nearly a decade and has had success in accelerating preliminary remediation work while also reducing potential clean up costs. However, little work has been completed on how the sensitivity of these detection systems are affected when used with this technology because while the intrinsic efficiency of the detector is constant, scanning efficiency can vary depending on data sampling time and scanning speed. To better understand scanning efficiency for a detector attached to such a system, a device was developed which moved soil at a constant speed underneath a Field Instrument for Detecting Low Energy Radiation (FIDLER). Count rate was measured every 2 s as a 241Am source passed under the detector at speeds ranging from approximately 10 cm s(-1) to 100 cm s(-1). A surface source and a buried source were both examined. Experimental detection efficiency was calculated and compared to Monte Carlo generated results. For the surface source, the efficiency dropped to a value of approximately 1% at 100 cm s(-1). At the same speed, the buried source had a detection efficiency of 0.1%, primarily due to attenuation of the low energy photon in the soil. It was also noted that the response time of the meter affected the scanning efficiency. With a response time set at 1 s, higher average efficiencies were recorded but with a large standard deviation from the mean. Higher response time setting had the effect of reducing the variability of the reading but also reducing efficiency.
Americium, Time Factors, Radiation Monitoring, Equipment Design, Sensitivity and Specificity, Environmental Monitoring
Americium, Time Factors, Radiation Monitoring, Equipment Design, Sensitivity and Specificity, Environmental Monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |