<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 7680013
Cyclic GMP is recognized as an important intracellular mediator of extracellular signals such as nitric oxide and natriuretic peptides. Cyclic GMP interacts with three types of intracellular receptor proteins: cGMP-dependent protein kinases, cGMP-regulated ion channels, and cGMP-regulated cyclic nucleotide phosphodiesterases. This means that cGMP can alter cell function through protein phosphorylation or through mechanisms not directly related to protein phosphorylation. Cyclic GMP appears to regulate a number of intracellular processes, such as vascular smooth muscle relaxation and neutrophil activation, through these receptor proteins in the cell. It is also becoming clear that the localization of these cGMP receptor proteins in the cell is an important factor in the regulation of cell function by cGMP.
3',5'-Cyclic-GMP Phosphodiesterases, Animals, Humans, Cyclic GMP, Protein Kinases, Ion Channels
3',5'-Cyclic-GMP Phosphodiesterases, Animals, Humans, Cyclic GMP, Protein Kinases, Ion Channels
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 663 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |