Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Diseasearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Disease
Article
License: implied-oa
Data sources: UnpayWall
Plant Disease
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Eutypa lata by PCR-RFLP

Authors: Walter D. Gubler; Florent P. Trouillas; Philippe E. Rolshausen;

Identification of Eutypa lata by PCR-RFLP

Abstract

Eutypa lata is a vascular canker pathogen of woody plants commonly diagnosed by isolating the pathogen from infected tissue. Related fungi from the same family, the Diatrypaceae, also have been found in association with grapevine in Californian vineyards. An in situ polymerase chain reaction (PCR) method has been developed for detection of E. lata in infected wood tissue. However, our results indicate that this method also would amplify other Diatrypaceous fungi, which could potentially lead to an incorrect diagnosis. Therefore, we developed a PCR-restriction fragment length polymorphism (PCR-RFLP) assay. The internal transcribed spacer (ITS)1/5.8S/ITS2 ribosomal DNA region was amplified by PCR using universal primers, and RFLP patterns were determined after digestion with AluI. The restriction profiles obtained served to distinguish E. lata from wood trunk pathogens of grapevine (Phomopsis viticola, Botryodiplodia sp., Phaeoacremonium aleophilum, and Phaeomoniella chlamydospora), Diatrypaceous fungi (Diatrype sp., Diatrypella sp., Eutypella vitis, and Eutypa leptoplaca), and Cryptovalsa sp. found on dead wood of grapevine, and other Eutypa spp. (E.petrakii var. hederae, E. astroidea, E. crustata, and E. lejoplaca), with the exception of E. armeniacae, which we regard as a synonym for E. lata, and E. laevata, which has not been found on grapevine.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
hybrid