Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Diseasearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Disease
Article
License: implied-oa
Data sources: UnpayWall
Plant Disease
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fusarium Wilt of Gerbera Caused by a Fusarium sp. in Brazil

Authors: A. Minuto; M. L. Gullino; Angelo Garibaldi; M. Shiniti Uchimura;

Fusarium Wilt of Gerbera Caused by a Fusarium sp. in Brazil

Abstract

In 2006, gerbera (Gerbera jamesonii) plants, cvs. Basic, Xena, and Olimpia grown for cut flower production in two greenhouse farms in the region of Guarapuava, Paraná, Brazil, exhibited symptoms of a wilt disease. Affected plants (approximately 20, 60, and 50% on cvs. Basic, Xena, and Olimpia, respectively) were stunted and developed yellow leaves unilaterally with initially brown and eventually black streaks in the vascular system. The first symptoms occurred 2 months after transplanting during the hottest period of the summer with an average air temperature of 27°C. Vascular streaks in the yellow leaves were continuous with a brown discoloration in the vascular system of the crown and upper taproot. Occasionally, the leaves of affected plants turned red. A Fusarium sp. was consistently and readily isolated onto a Fusarium-selective medium from symptomatic vascular tissue sampled from the crown of infected plants. Colonies were identified as Fusarium oxysporum on the basis of colony and conidia morphology (1) after subculturing on potato dextrose agar. Since F. oxysporum f. sp. chrysanthemi has been previously reported on Chrysanthemum morifolium, Argyranthemum frutescens, and gerbera (4), pathogenicity tests were carried out by using one monoconidial isolate obtained from wilted plants and one Italian isolate (F. oxysporum f. sp. chrysanthemi MASS 6). The isolates of F. oxysporum were grown in casein hydrolysate in shake culture (90 rpm) for 10 days at 25°C with 12 h of fluorescent light per day. Healthy rooted plants of 30-, 20-, and 45-day-old C. morifolium (cv. Captiva), A. frutescens (cv. Stella 2000), and gerbera (cvs. Jaska, Dalma, and Excellence), respectively, were inoculated by separately dipping roots into a conidial suspension (5 × 107 conidia/ml) of the two isolates of F. oxysporum. Plants were transplanted (one plant per pot) into pots (3.5 liter vol). Noninoculated plants served as control treatments. Plants (15 per treatment) were grown in a glasshouse at an average day temperature of 32°C and night temperature of 23°C (minimum 21°C and maximum 43°C). Wilt symptoms and discoloration of the vascular system in roots, crown, and petioles developed within 29 days on C. morifolium, 26 days on A. frutescens, and 14 days on gerbera. Noninoculated plants remained healthy. F. oxysporum was consistently reisolated from infected plants. The pathogenicity test was carried out twice. Gerbera wilt caused by F. oxysporum f. sp. chrysanthemi was recently reported in Italy (2) and Spain (3). Currently, the wilt of gerbera in the area of Paraná is limited to two farms. To our knowledge, this is the first report of the disease in Brazil as well as in South America. References: (1) C. Booth. Fusarium. CMI, Kew, UK, 1977. (2) A. Garibaldi et al. Plant Dis. 88:311, 2004. (3) A. Garibaldi et al. Plant Dis. 91:638, 2007. (4) A. Minuto et al. J. Phytopathol. 155:373, 2007.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
hybrid