Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Diseasearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Disease
Article
License: implied-oa
Data sources: UnpayWall
Plant Disease
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resistance to Plasmodiophora brassicae in Brassica rapa and Brassica juncea genotypes From China

Authors: Jie Feng; Fei Li; Hui Zhang; Shujiang Zhang; Sheau-Fang Hwang; Shifan Zhang; Rifei Sun; +1 Authors

Resistance to Plasmodiophora brassicae in Brassica rapa and Brassica juncea genotypes From China

Abstract

Clubroot disease, caused by Plasmodiophora brassicae Woronin, has become a major problem in cruciferous crops worldwide. Chinese cabbage (Brassica rapa), pak choi (B. rapa), and mustard (B. juncea) are important vegetable crops in China. Development of clubroot-resistant cultivars of these crops is urgently needed. In this study, 71 B. rapa and B. juncea genotypes from China, including cultivars and inbred lines, were evaluated for resistance to three P. brassicae pathotypes. A significant interaction was observed between the P. brassicae pathotypes and the Brassica genotypes. Pathotype 3, as defined on the differentials of Williams, exhibited the weakest virulence on all plant material. By contrast, pathotypes 5 and 6 were both highly pathogenic on most of the tested genotypes. In all, 10 of the 14 Chinese cabbage cultivars were resistant to all three pathotypes, while 4 were resistant only to a specific pathotype. Seven of eight progenies obtained from the selfing of Chinese cabbage cultivars were resistant to pathotype 3 but most were susceptible to pathotypes 5 and 6. Most inbred lines of Chinese cabbage and all inbred lines of pak choi and mustard were susceptible to all three pathotypes but their susceptibility was lower to pathotype 3 than to pathotypes 5 and 6.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
hybrid