Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Systematic Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Systematic Biology
Article
Data sources: UnpayWall
Systematic Biology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homoplasy and Clade Support

Authors: Matthew C, Brandley; Dan L, Warren; Adam D, Leaché; Jimmy A, McGuire;

Homoplasy and Clade Support

Abstract

Distinguishing phylogenetic signal from homoplasy (shared similarities among taxa that do not arise by common ancestry) is an implicit goal of any phylogenetic study. Large amounts of homoplasy can interfere with accurate tree inference, and it is expected that common measures of clade support, including bootstrap proportions and Bayesian posterior probabilities, should also be impacted to some degree by homoplasy. Through data simulation and analysis of 38 empirical data sets, we show that high amounts of homoplasy will affect all measures of clade support in a manner that is dependent on clade size. More specifically, the smallest taxon bipartitions in an unrooted tree topology will receive higher support relative to clades of intermediate sizes, even when all clades are supported by the same amount of data. We determine that the ultimate causes of this effect are the inclusion of random trees (due to homoplasy) during bootstrap resampling and Markov chain Monte Carlo (MCMC) topology searching and the higher relative proportion of small taxon bipartitions (i.e., 2 or 3 taxa) to larger sized bipartitions. However, the use of explicit model-based methods, especially Bayesian MCMC methods, effectively overcomes this clade size effect even when very small amounts of phylogenetic signal are present. We develop a post hoc statistic, the clade disparity index (CDI), to measure both the relative magnitude of the clade size effect and its statistical significance. In analyses of both simulated and empirical data, CDI values indicate that Bayesian MCMC analyses are substantially more likely to estimate clade support values that are uncorrelated with clade size than are maximum parsimony and maximum likelihood bootstrap analyses and thus less affected by homoplasy. These results may be especially relevant to "deep" phylogenetic problems, such as reconstructing the tree of life, as they represent the largest possible extremes of time and evolutionary rates, 2 factors that cause homoplasy.

Related Organizations
Keywords

Models, Genetic, Computer Simulation, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze