Views provided by UsageCounts
doi: 10.1093/rpd/nci641
pmid: 16644952
In this paper main optically stimulated luminescence (OSL) and thermoluminescence (TL) characteristics are presented of a newly synthesised material MgO doped with terbium (Tb) developed at the Institute of Nuclear Science, Vinca. A thermally stimulated emission spectrum showed the characteristic lines of Tb3+ in a wide range of wavelengths. The TL sensitivity of the main TL glow peak at 315 degrees C is 1.7 times higher than the TL of Al2O3:C. The highest OSL sensitivity was obtained under green lamp (500-570 nm) stimulation. The fast component in the OSL decay curve is 2.4 times faster than Al2O3:C. The OSL signal is linear with dose up to 10 Gy. The lower limit of detection was found to be 100 microGy. These first results show that the newly synthesised material has some promising properties for the application in radiation dosimetry.
Hot Temperature, Light, Reproducibility of Results, Dose-Response Relationship, Radiation, Equipment Design, Radiation Dosage, Sensitivity and Specificity, Equipment Failure Analysis, Materials Testing, Thermoluminescent Dosimetry, Magnesium Oxide, Terbium
Hot Temperature, Light, Reproducibility of Results, Dose-Response Relationship, Radiation, Equipment Design, Radiation Dosage, Sensitivity and Specificity, Equipment Failure Analysis, Materials Testing, Thermoluminescent Dosimetry, Magnesium Oxide, Terbium
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 26 |

Views provided by UsageCounts