Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Regenerative Biomate...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Regenerative Biomaterials
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion

Authors: Yiru Xia; Zhaowenbin Zhang; Kecong Zhou; Zhikai Lin; Rong Shu; Yuze Xu; Zhen Zeng; +2 Authors

Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion

Abstract

Abstract Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite–hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu2+ and Zn2+ and SiO32−) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.

Related Organizations
Keywords

Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold