
arXiv: 1703.03971
Assuming the minimal time to send a bit of information in the Einstein clock synchronization of the two clocks located at different positions, we introduce the extended metric to the information space. This modification of relativity changes the red shift formula keeping the geodesic equation intact. Extending the gauge symmetry hidden in the metric to the 5-dimensional general invariance, we start with the Einstein-Hilbert action in the 5-dimensional space-time. After the 4+1 decomposition, we obtain the effective action which includes the Einstein-Hilbert action for gravity, the Maxwell-like action for the velocity field and the Lagrange multiplier term which ensures the normalization of the time-like velocity field. As an application, we investigate a solution of the field equations in the case that a 4-dimensional part of the extended metric is spherically symmetric, which exhibits Schwarzschild-like space-time but with the minimal radius. As a discussion we present a possible informational model of synchronization process which is inherently stochastic. The model enables us to interpret the information quantity as a new spatial coordinate.
34 pages, 7 figures
gauge symmetry, clock synchronization, FOS: Physical sciences, Einstein's equations (general structure, canonical formalism, Cauchy problems), General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, information
gauge symmetry, clock synchronization, FOS: Physical sciences, Einstein's equations (general structure, canonical formalism, Cauchy problems), General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, information
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
