
arXiv: 1704.08827
We discuss new-type grand unified theories based on grand unified groups broken to their special subgroups as well as their regular subgroups. In the framework, when we construct four-dimensional (4D) chiral gauge theories, i.e., the Standard Model (SM), 4D gauge anomaly cancellation restricts the minimal number of generations of the 4D SM Weyl fermions. We show that in a six-dimensional (6D) $SU(16)$ gauge theory on $M^4\times T^2/\mathbb{Z}_2$ one generation of the SM fermions can be embedded into a 6D bulk Weyl fermion. For the model including three chiral generations of the SM fermions, the 6D and 4D gauge anomalies on the bulk and fixed points are canceled out without exotic 4D chiral fermions.
9 pages, 1 table, no figures
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
