
Abstract Poisson–Lie T-duality/plurality was recently generalized to Jacobi–Lie T-plurality formulated in terms of double field theory and based on Leibniz algebras given by the structure coefficients fabc, fcab, and Za, Za. We investigate three- and four-dimensional sigma models corresponding to six-dimensional Leibniz algebras with fbba ≠ 0, Za = 0. We show that these algebras are plural one to another and, moreover, to an algebra with fbba = 0, Za = 0. These pluralities are used for construction of Jacobi–Lie models. It was conjectured that plural models should satisfy generalized supergravity equations. We have found examples of models satisfying “true” generalized supergravity equations where no trivialization to usual supergravity equations is possible. On the other hand, we show that there are also models corresponding to algebras with fbba ≠ 0, Za = 0 where the Killing vector appearing in generalized supergravity equations either vanishes or can be removed by suitable gauge transformation. Such models then satisfy usual supergravity equations, i.e. vanishing beta-function equations.
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
