Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Engineering Design and Selection
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY NC
Data sources: PubMed Central
Protein Engineering Design and Selection
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computer-aided antibody design

Authors: Matthew P. Jacobson; Haruki Nakamura; Daisuke Kuroda; Hiroki Shirai;

Computer-aided antibody design

Abstract

Recent clinical trials using antibodies with low toxicity and high efficiency have raised expectations for the development of next-generation protein therapeutics. However, the process of obtaining therapeutic antibodies remains time consuming and empirical. This review summarizes recent progresses in the field of computer-aided antibody development mainly focusing on antibody modeling, which is divided essentially into two parts: (i) modeling the antigen-binding site, also called the complementarity determining regions (CDRs), and (ii) predicting the relative orientations of the variable heavy (V(H)) and light (V(L)) chains. Among the six CDR loops, the greatest challenge is predicting the conformation of CDR-H3, which is the most important in antigen recognition. Further computational methods could be used in drug development based on crystal structures or homology models, including antibody-antigen dockings and energy calculations with approximate potential functions. These methods should guide experimental studies to improve the affinities and physicochemical properties of antibodies. Finally, several successful examples of in silico structure-based antibody designs are reviewed. We also briefly review structure-based antigen or immunogen design, with application to rational vaccine development.

Keywords

Models, Molecular, Protein Conformation, Antibody Affinity, Immunoglobulin Variable Region, Immunoglobulin Subunits, Review, Antibodies, Animals, Computer-Aided Design, Humans, Binding Sites, Antibody

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    211
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
211
Top 1%
Top 10%
Top 1%
Green
hybrid