Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PLANT PHYSIOLOGY
Article . 2024 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

Conserved transcription factors NRZ1 and NRM1 regulate NLR receptor-mediated immunity

Authors: Qingling Zhang; Jubin Wang; Yuanyuan Li; Jeffrey Tung; Yingtian Deng; Barbara Baker; Savithramma P Dinesh-Kumar; +1 Authors

Conserved transcription factors NRZ1 and NRM1 regulate NLR receptor-mediated immunity

Abstract

Abstract Plant innate immunity mediated by the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors plays an important role in defense against various pathogens. Although key biochemical events involving NLR activation and signaling have been recently uncovered, we know very little about the transcriptional regulation of NLRs and their downstream signaling components. Here, we show that the Toll-Interleukin 1 receptor homology domain containing NLR (TNL) gene N (Necrosis), which confers resistance to Tobacco mosaic virus, is transcriptionally induced upon immune activation. We identified two conserved transcription factors, N required C3H zinc finger 1 (NRZ1) and N required MYB-like transcription factor 1 (NRM1), that activate N in an immune responsive manner. Genetic analyses indicated that NRZ1 and NRM1 positively regulate coiled-coil domain-containing NLR- and TNL-mediated immunity and function independently of the signaling component Enhanced Disease Susceptibility 1. Furthermore, NRZ1 functions upstream of NRM1 in cell death signaling, and their gene overexpression induces ectopic cell death and expression of NLR signaling components. Our findings uncovered a conserved transcriptional regulatory network that is central to NLR-mediated cell death and immune signaling in plants.

Keywords

Cell Death, Gene Expression Regulation, Plant, Arabidopsis Proteins, Arabidopsis, Plant Immunity, NLR Proteins, Transcription Factors, Signal Transduction, Plant Diseases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!