Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Petrologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Petrology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Petrology
Article . 2024
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2024
License: CC BY
Data sources: Apollo
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Thermodynamic Models for Anhydrous Alkaline-Silicate Magmatic Systems

Authors: Weller, OM; Holland, TJB; Soderman, CR; Green, ECR; Powell, R; Beard, CD; Riel, N;

New Thermodynamic Models for Anhydrous Alkaline-Silicate Magmatic Systems

Abstract

Abstract A new thermodynamic model for silicate melt in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–TiO2–Fe2O3–Cr2O3 model system is presented, building on the tholeiitic through to granitic melt model of Holland et al. (2018) [Journal of Petrology, 59, 881–900] but extending for the first time into anhydrous alkaline systems. The new melt model is accompanied by new thermodynamic models for nepheline, kalsilite, leucite, melilite and ilmenite. Collectively these models enable pseudosection modelling of alkaline-silicate magmatic systems, providing a new tool for investigating this geologically- and economically-important compositional space. The models are calibrated with respect to experimental data on phase relations among minerals and melt, and the fit is benchmarked here via detailed comparison with seven experimental datasets, which encompass a range of pressure (0–22 kbar), temperature (680–1350°C), oxygen fugacity (log fO2 ΔFMQ-3 to +1), total alkali (3–16 wt %) and silica (37–70 wt %) conditions. The calculated pseudosections successfully reproduce experimental crystallisation sequences and phase compositions, indicating that the thermodynamic models are well calibrated across this spectrum of conditions. Redox buffered experimental conditions are simulated using oxygen buffered pseudosections. Contouring of oxygen buffered pseudosections with XFe3+ (mol. Fe3+/Fetotal), or pseudosections of varying XFe3+ with ΔFMQ, reveals (i) often complex and non-intuitive relationships between these two representations of oxidation state, and (ii) substantial variation in ferric iron over narrow temperature intervals in some oxygen buffered sets of experiments. An implication is that simulating oxygen buffering is vital when benchmarking thermodynamic models using experimental results. Furthermore, because natural igneous systems likely feature a near-constant XFe3+, it is important to assess experimental results in this framework when making inferences about natural systems, recognising that oxygen fugacity is a consequence not a control of phase equilibria in nature. Overall, our new models provide a novel tool to explore the role of variables, such as pressure, fractional crystallisation and crustal assimilation in the petrogenesis of alkaline-silicate magmatic systems and their associated mineralisation.

Countries
United Kingdom, Netherlands
Keywords

Nepheline, Pseudosection modelling, Thermodynamic models, Alkaline-silicate rocks, Oxygen fugacity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green
hybrid