Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JNCI Monographsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JNCI Monographs
Article
Data sources: UnpayWall
JNCI Monographs
Article . 2001 . Peer-reviewed
Data sources: Crossref
JNCI Monographs
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biology of Oral Mucosa and Esophagus

Authors: Mary J. Kremer; Christopher A. Squier;

Biology of Oral Mucosa and Esophagus

Abstract

The mucosal lining of the oral cavity and esophagus functions to protect the underlying tissue from mechanical damage and from the entry of microorganisms and toxic materials that may be present in the oropharynx. In different regions, the mucosa shows adaptation to differing mechanical demands: Masticatory mucosa consists of a stratified squamous keratinized epithelium tightly attached to the underlying tissues by a collagenous connective tissue, whereas lining mucosa comprises a nonkeratinized epithelium supported by a more elastic and flexible connective tissue. The epithelium is constantly replaced by cell division in the deeper layers, and turnover is faster in the lining than in the masticatory regions. Chemotherapeutic agents and radiation limit proliferation of the epithelium so that it becomes thin or ulcerated; this will first occur in the lining regions. The principal patterns of epithelial differentiation are represented by keratinization and nonkeratinization. As keratinocytes enter into differentiation, they become larger and begin to flatten and to accumulate cytokeratin filaments. In addition to the keratins, the differentiating keratinocytes synthesize and retain a number of specific proteins, including profilaggrin, involucrin, and other precursors of the thickening of the cell envelope in the most superficial layers. The concept of epithelial homeostasis implies that cell production in the deeper layers will be balanced by loss of cells from the surface. There is a rapid clearance of surface cells, which acts as a protective mechanism by limiting colonization and invasion of microorganisms adherent to the mucosal surface.

Related Organizations
Keywords

Inflammation, Models, Anatomic, Time Factors, Radiotherapy, Mouth Mucosa, Antineoplastic Agents, Cell Differentiation, Epithelial Cells, Models, Biological, Esophagus, Humans, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    470
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
470
Top 1%
Top 1%
Top 10%
bronze