Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biological Small Angle Scattering

Authors: Thomas D. Grant; Eaton E. Lattman; Edward H. Snell;

Biological Small Angle Scattering

Abstract

The technique of small angle solution scattering has been revolutionized in the last two decades. Exponential increases in computing power, parallel algorithm development, and the development of synchrotron, free-electron X-ray sources, and neutron sources, have combined to allow new classes of studies for biological specimens. These include time-resolved experiments in which functional motions of proteins are monitored on a picosecond timescale, and the first steps towards determining actual electron density fluctuations within particles. In addition, more traditional experiments involving the determination of size and shape, and contrast matching that isolate substructures such as nucleic acid, have become much more straightforward to carry out, and simultaneously require much less material. These new capabilities have sparked an upsurge of interest in solution scattering on the part of investigators in related disciplines. Thus, this book seeks to guide structural biologists to understand the basics of small angle solution scattering in both the X-ray and neutron case, to appreciate its strengths, and to be cognizant of its limitations. It is also directed at those who have a general interest in its potential. The book focuses on three areas: theory, practical aspects and applications, and the potential of developing areas. It is an introduction and guide to the field but not a comprehensive treatment of all the potential applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!