Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1093/oso/97...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1093/oso/97...
Part of book or chapter of book . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidation and Reduction Reactions

Authors: Christopher O. Oriakhi;

Oxidation and Reduction Reactions

Abstract

Oxidation-reduction reactions, or redox reactions, occur in many chemical and biochemical systems. The process involves the complete or partial transfer of electrons from one atom to another. Oxidation and reduction processes are complementary. For every oxidation, there is always a corresponding reduction process. This is because for a substance to gain electrons in a chemical reaction, another substance must be losing these electrons. Oxidation is defined as a process by which an atom or ion loses electrons. This can occur in several ways: • Addition of oxygen or other electronegative elements to a substance:. . . 2 Mg(s)+O2(g) → 2 MgO(s) . . .2 Mg(s)+O2(g) → MgCl2 (s). . . • Removal of hydrogen or other electropositive elements from a substance: . . . H2S(g)+Cl2(g) → 2 HCl(g)+S(s) . . .Here, H2S is oxidized. • The direct removal of electrons from a substance: . . . 2 FeCl2 (s)+Cl2(g) → 2 FeCl3 (s) . . . Fe2+ → Fe3+ +e− . . . Reduction is defined as the process by which an atom or ion gains electrons. This can occur in the following ways: • Removal of oxygen or other electronegative elements from a substance: . . . MgO(s)+H2(g) → Mg(s)+H2O(g). . . • Addition of hydrogen or other electropositive elements to a substance: . . . H2(g)+Br2(g) → 2 HBr(g). . . 2 Na(s)+Cl2(g) → 2 NaCl(s). . . Here, chlorine (Cl2) is reduced. • The addition of electrons to a substance: . . . Fe3+ +e− → Fe2+ . . . Oxidation number or oxidation state is a number assigned to the atoms in a substance to describe their relative state of oxidation or reduction. These numbers are used to keep track of electron transfer in chemical reactions. Some general rules are used to determine the oxidation number of an atom in free or combined state. 1. Any atom in an uncombined (or free) element (e.g., N2, Cl2, S8, O2, O3, and P4) has an oxidation number of zero. 2. Hydrogen has an oxidation number of +1 except in metal hydrides (e.g., NaH, MgH2) where it is −1. 3. Oxygen has an oxidation number of −2 in all compounds except in peroxides (e.g., H2O2, Na2O2) where it is –1.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!