Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nephrology Dialysis ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nephrology Dialysis Transplantation
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glutamate receptors in the kidney

Authors: Stuart E, Dryer;

Glutamate receptors in the kidney

Abstract

l-Glutamate (l-Glu) plays an essential role in the central nervous system (CNS) as an excitatory neurotransmitter, and exerts its effects by acting on a large number of ionotropic and metabotropic receptors. These receptors are also expressed in several peripheral tissues, including the kidney. This review summarizes the general properties of ionotropic and metabotropic l-Glu receptors, focusing on N-methyl-d-aspartate (NMDA) and Group 1 metabotropic glutamate receptors (mGluRs). NMDA receptors are expressed in the renal cortex and medulla, and appear to play a role in the regulation of renal blood flow, glomerular filtration, proximal tubule reabsorption and urine concentration within medullary collecting ducts. Sustained activation of NMDA receptors induces Ca(2+) influx and oxidative stress, which can lead to glomerulosclerosis, for example in hyperhomocysteinemia. Group 1 mGluRs are expressed in podocytes and probably in other cell types. Mice in which these receptors are knocked out gradually develop albuminuria and glomerulosclerosis. Several endogenous agonists of l-Glu receptors, which include sulfur-containing amino acids derived from l-homocysteine, and quinolinic acid (QA), as well as the co-agonists glycine and d-serine, are present in the circulation at concentrations capable of robustly activating ionotropic and metabotropic l-Glu receptors. These endogenous agonists may also be secreted from renal parenchymal cells, or from cells that have migrated into the kidney, by exocytosis or by transporters such as system x(-)(c), or by transporters involved in ammonia secretion. l-Glu receptors may be useful targets for drug therapy, and many selective orally-active compounds exist for investigation of these receptors as potential drug targets for various kidney diseases.

Related Organizations
Keywords

Mice, Receptors, Glutamate, Animals, Glutamic Acid, Humans, Kidney

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
bronze