
doi: 10.1093/nass/nrn256
pmid: 18776475
We designed and synthesized dumbbell-shaped nanocircular RNAs for RNA interference applications, which consist of a stem and two loops(1). RNA dumbbells are specifically recognized and cleaved by the human Dicer enzyme, and are thus transformed into double-stranded RNA in cells, although this RNA is resistant to degradation in serum. The structure was optimized to maximize its RNAi activity. The most potent activity was achieved when the stem length was 23 base pairs. The RNAi activity is prolonged by the shape of the molecule, an endless structure, compared with that of normal siRNA.
Ribonuclease III, Mice, NIH 3T3 Cells, Animals, RNA, RNA Interference, RNA, Circular, RNA, Small Interfering, Nanostructures
Ribonuclease III, Mice, NIH 3T3 Cells, Animals, RNA, RNA Interference, RNA, Circular, RNA, Small Interfering, Nanostructures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
