Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2009 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY NC
Data sources: PubMed Central
versions View all 3 versions
addClaim

One RNA plays three roles to provide catalytic activity to a group I intron lacking an endogenous internal guide sequence

Authors: Vaidya, Nilesh; Lehman, Niles;

One RNA plays three roles to provide catalytic activity to a group I intron lacking an endogenous internal guide sequence

Abstract

Catalytic RNA molecules possess simultaneously a genotype and a phenotype. However, a single RNA genotype has the potential to adopt two or perhaps more distinct phenotypes as a result of differential folding and/or catalytic activity. Such multifunctionality would be particularly significant if the phenotypes were functionally inter-related in a common biochemical pathway. Here, this phenomenon is demonstrated by the ability of the Azoarcus group I ribozyme to function when its canonical internal guide sequence (GUG) has been removed from the 5' end of the molecule, and added back exogenously in trans. The presence of GUG triplets in non-covalent fragments of the ribozyme allow trans-splicing to occur in both a reverse splicing assay and a covalent self-assembly assay in which the internal guide sequence (IGS)-less ribozyme can put itself together from two of its component pieces. Analysis of these reactions indicates that a single RNA fragment can perform up to three distinct roles in a reaction: behaving as a portion of a catalyst, behaving as a substrate, and providing an exogenous IGS. This property of RNA to be multifunctional in a single reaction pathway bolsters the probability that a system of self-replicating molecules could have existed in an RNA world during the origins of life on the Earth.

Country
United States
Related Organizations
Keywords

Base Sequence, Models, Genetic, RNA Splicing, Molecular Sequence Data, RNA -- Evolution, Azoarcus, Evolutionary genetics, Catalysis, Introns, Catalytic RNA, Molecular Genetics, Evolution, Molecular, Chemistry, RNA, Bacterial, RNA, RNA, Small Untranslated, RNA, Catalytic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
gold