
Computational modeling of biological systems has become an effective tool for analyzing cellular behavior and for elucidating key properties of the intricate networks that underlie experimental observations. While most modeling techniques rely heavily on the concentrations of intracellular molecules, little attention has been paid to tracking and simulating the significant volume fluctuations that occur over each cell division cycle. Here, we use fluorescence microscopy to acquire single cell volume trajectories for a large population of Saccharomyces cerevisiae cells. Using this data, we generate a comprehensive set of statistics that govern the growth and division of these cells over many generations, and we discover several interesting trends in their size, growth and protein production characteristics. We use these statistics to develop an accurate model of cell cycle volume dynamics, starting at cell birth. Finally, we demonstrate the importance of tracking volume fluctuations by combining cell division dynamics with a minimal gene expression model for a constitutively expressed fluorescent protein. The significant oscillations in the cellular concentration of a stable, highly expressed protein mimic the observed experimental trajectories and demonstrate the fundamental impact that the cell cycle has on cellular functions.
Luminescent Proteins, Microscopy, Fluorescence, Data Interpretation, Statistical, Synthetic Biology and Chemistry, Cell Cycle, Gene Expression, Cell Growth Processes, Saccharomyces cerevisiae, Flow Cytometry, Fluorescent Dyes
Luminescent Proteins, Microscopy, Fluorescence, Data Interpretation, Statistical, Synthetic Biology and Chemistry, Cell Cycle, Gene Expression, Cell Growth Processes, Saccharomyces cerevisiae, Flow Cytometry, Fluorescent Dyes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
