
Despite the fact that in living cells DNA molecules are long and highly crowded, they are rarely knotted. DNA knotting interferes with the normal functioning of the DNA and, therefore, molecular mechanisms evolved that maintain the knotting and catenation level below that which would be achieved if the DNA segments could pass randomly through each other. Biochemical experiments with torsionally relaxed DNA demonstrated earlier that type II DNA topoisomerases that permit inter- and intramolecular passages between segments of DNA molecules use the energy of ATP hydrolysis to select passages that lead to unknotting rather than to the formation of knots. Using numerical simulations, we identify here another mechanism by which topoisomerases can keep the knotting level low. We observe that DNA supercoiling, such as found in bacterial cells, creates a situation where intramolecular passages leading to knotting are opposed by the free-energy change connected to transitions from unknotted to knotted circular DNA molecules.
Models, Molecular, DNA, Superhelical, Computational Biology, Nucleic Acid Conformation, Computer Simulation; DNA, Circular/chemistry; DNA, Superhelical/chemistry; Models, Molecular; Monte Carlo Method; Nucleic Acid Conformation, Computer Simulation, DNA, Circular, Monte Carlo Method
Models, Molecular, DNA, Superhelical, Computational Biology, Nucleic Acid Conformation, Computer Simulation; DNA, Circular/chemistry; DNA, Superhelical/chemistry; Models, Molecular; Monte Carlo Method; Nucleic Acid Conformation, Computer Simulation, DNA, Circular, Monte Carlo Method
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
