
We report a novel procedure, which can be applied to probing of specific DNA, for covalently attaching probe DNA to complementary sequences in double-stranded target DNA. Employing hairpin-like oligonucleotide probes in combination with successive use of recA protein and DNA ligase, probes can be attached directly to target DNA molecules without dissociation of the DNA. The hairpin-like structure of the probes was designed so that the terminus of the probe oligonucleotide can be brought into close stereochemical proximity to the terminus of the complementary strand of target DNA for ligation. Because of the elimination of the DNA dissociation and subsequent hybridization (and washing) steps in the currently employed method, the probing process has become greatly simplified and more efficient and may lead to development of fully automated probing systems.
Base Sequence, Molecular Sequence Data, Escherichia coli, Animals, Humans, Nucleic Acid Hybridization, DNA, DNA Probes
Base Sequence, Molecular Sequence Data, Escherichia coli, Animals, Humans, Nucleic Acid Hybridization, DNA, DNA Probes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
