Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1998 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of the DNA ligase III zinc finger in polynucleotide binding and ligation

Authors: R M, Taylor; J, Whitehouse; E, Cappelli; G, Frosina; K W, Caldecott;

Role of the DNA ligase III zinc finger in polynucleotide binding and ligation

Abstract

Mammalian DNA ligase III exists as two distinct isoforms denoted alpha and beta. Both forms possess a motif that is homologous to the putative zinc finger present in poly(ADP-ribose) polymerase. Here, the role of this motif in the binding and ligation of nicked DNA and RNA substrates in vitro has been examined in both isoforms. Disruption of the putative zinc finger did not affect DNA ligase III activity on nicked DNA duplex, nor did it abolish DNA ligase III-alpha activity during DNA base excision repair in a cell-free assay. In contrast, disruption of this motif reduced 3-fold the activity of both DNA ligase III isoforms on nicked RNA present in RNA/DNA homopolymers. Furthermore, whereas disruption of the motif did not prevent binding of DNA ligase III to nicked DNA duplex, binding to nicked RNA homopolymers was reduced approximately 10-fold. These results suggest that the putative zinc finger does not stimulate DNA ligase III activity on simple nicked DNA substrates, but indicate that this motif can target the binding and activity of DNA ligase III to nicked RNA homopolymer. The implications of these results to the cellular role of the putative zinc finger are discussed.

Related Organizations
Keywords

Base Sequence, DNA Ligases, DNA Repair, Molecular Sequence Data, Polynucleotides, DNA, In Vitro Techniques, Recombinant Proteins, Substrate Specificity, DNA-Binding Proteins, DNA Ligase ATP, X-ray Repair Cross Complementing Protein 1, Catalytic Domain, Escherichia coli, Mutagenesis, Site-Directed, Animals, RNA, Amino Acid Sequence, Poly-ADP-Ribose Binding Proteins, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
gold