Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1998 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Intracellular RNA cleavage by the hairpin ribozyme

Authors: A A, Seyhan; J, Amaral; J M, Burke;

Intracellular RNA cleavage by the hairpin ribozyme

Abstract

Studies involving ribozyme-directed inactivation of targeted RNA molecules have met with mixed success, making clear the importance of methods to measure and optimize ribozyme activity within cells. The interpretation of biochemical assays for determining ribozyme activity in the cellular environment have been complicated by recent results indicating that hammerhead and hairpin ribozymes can cleave RNA following cellular lysis. Here, we report the results of experiments in which the catalytic activity of hairpin ribozymes is monitored following expression in mammalian cells, and in which post-lysis cleavage is rigorously excluded through a series of biochemical and genetic controls. Following transient transfection, self-processing transcripts containing active and inactive hairpin ribozymes together with cleavable and non-cleavable substrates were generated within the cytoplasm of mouse OST7-1 cells using T7 RNA polymerase. Unprocessed RNA and products ofintracellular cleavage were detected and analyzed using a primer-extension assay. Ribozyme-containing transcripts accumulated to a level of 4 x 10(4) copies per cell, and self-processing proceeded to an extent of >75% within cells. Cellular RNA processing was blocked by mutations within the ribozyme (G8A, G21U) or substrate (DeltaA-1) that, in vitro , eliminate cleavage without affecting substrate binding. In addition to self-processing activity, trans -cleavage reactions were supported by the ribozyme-containing product of the self-processing reaction, and by the ribozyme linked to the non-cleavable substrate analog. Ribozyme activity was present in extracts of cells expressing constructs with active ribozyme domains. These results provide direct biochemical evidence for the catalytic activity of the hairpin ribozyme in a cellular environment, and indicate that self-processing ribozyme transcripts may be well suited for cellular RNA-inactivation experiments.

Related Organizations
Keywords

Cytoplasm, Base Sequence, Molecular Sequence Data, Peptide Chain Elongation, Translational, Gene Expression, Mice, Animals, Nucleic Acid Conformation, RNA, RNA, Catalytic, RNA Processing, Post-Transcriptional

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
gold