
In many organisms (e.g., gram-positive eubacteria) Gin-tRNA is not formed by direct glutaminylation of tRNAGln but by a specific transamidation of Glu-tRNAGln. We wondered whether a similar transamidation pathway also operates in the formation of Asn-tRNA in these organisms. Therefore we tested in S-100 preparations of Lactobacillus bulgaricus, a gram-positive eubacterium, for the conversion by an amidotransferase of [14C]Asp-tRNA to [14C]Asn-tRNA. As no transamidation was observed, we searched for genes for asparaginyl-tRNA synthetase (AsnRS). Two DNA fragments (from different locations of the L.bulgaricus chromosome) were found each containing an ORF whose sequence resembled that of the Escherichia coli asnS gene. The derived amino acid sequences of the two ORFs (432 amino acids) were the same and 41% identical with E.coli AsnRS. When one of the ORFs was expressed in E.coli, it complemented the temperature sensitivity of an E.coli asnS mutant. S-100 preparations of this transformant showed increased charging of unfractionated L.bulgaricus tRNA with asparagine. Deletion of the 3'-terminal region of the L.bulgaricus AsnRS gene led to loss of its complementation and aminoacylation properties. This indicates that L.bulgaricus contains a functional AsnRS. Thus, the transamidation pathway operates only for Gin-tRNAGln formation in this organism, and possibly in all gram-positive eubacteria.
DNA, Bacterial, RNA, Transfer, Asp, RNA, Transfer, Asn, Sequence Homology, Amino Acid, Aspartate-tRNA Ligase, Molecular Sequence Data, RNA, Transfer, Amino Acyl, Recombinant Proteins, Amino Acyl-tRNA Synthetases, Lactobacillus, Escherichia coli, Amino Acid Sequence, Asparagine
DNA, Bacterial, RNA, Transfer, Asp, RNA, Transfer, Asn, Sequence Homology, Amino Acid, Aspartate-tRNA Ligase, Molecular Sequence Data, RNA, Transfer, Amino Acyl, Recombinant Proteins, Amino Acyl-tRNA Synthetases, Lactobacillus, Escherichia coli, Amino Acid Sequence, Asparagine
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
