Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1994 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of genes encoding zinc finger proteins, non-histone chromosomal HMG protein homologue, and a putative GTP phosphohydrolase in the genome of Chilo iridescent virus

Authors: P, Schnitzler; M, Hug; M, Handermann; W, Janssen; E V, Koonin; H, Delius; C, Darai;

Identification of genes encoding zinc finger proteins, non-histone chromosomal HMG protein homologue, and a putative GTP phosphohydrolase in the genome of Chilo iridescent virus

Abstract

Five RNA transcripts of about 1.2 to 1.7 kilobases were mapped to a part of the genome of insect iridescent virus type 6 (Chilo iridescent virus; CIV) between genome coordinates 0.832 and 0.856 within the EcoRI DNA fragment F. The nucleotide sequence of this particular region (5702 base pairs) of the CIV genome was determined. The DNA sequence contains a number of perfect direct, inverted, and palindromic repeats including three clusters of tandemly organized repetitive DNA elements located between the nucleotide positions 1534 to 1566, 3720 to 3780, and 4350 to 4450. Eight long open reading frames (ORFs; EF1 to 8) were detected in the sequenced region of the CIV genome. ORF EF1 encodes a putative protein of 221 amino acid residues (aa) that is closely related to eukaryotic nonhistone chromosomal proteins of the high mobility group (HMG) superfamily. Virus encoded homologues of HMG proteins have not been reported so far. The EF2 gene product (145 aa) contains a specific zinc finger motif and belongs to a distinct group of identified and putative zinc finger proteins including a second putative protein (239 aa) of CIV encoded in the EcoRI DNA fragment Y (1984 bp; 0.381 to 0.391 viral map units). The product of EF6 (127 aa) is related to D250 ORF product of African swine fever virus (ASFV) and belongs to the recently described protein family sharing a highly conserved sequence motif with bacterial antimutator GTP phosphohydrolase MutT. Thus the sequenced region of the CIV genome encodes three putative proteins which may be directly involved in the replication and/or transcription of the viral DNA.

Keywords

Virus Cultivation, Base Sequence, Sequence Homology, Amino Acid, Transcription, Genetic, Molecular Sequence Data, High Mobility Group Proteins, Zinc Fingers, Genome, Viral, GTP Phosphohydrolases, Iridovirus, Lepidoptera, Viral Proteins, Animals, Amino Acid Sequence, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
gold